Bayesian analysis of resolved stellar populations: The fossil galaxy Eridanus II

> Jairo Alzate Verónica Lora Gustavo Bruzual Luis Lomeli Bernardo Sodi

Extragalactic meeting May 11, 2021

Fossil galaxies

Lovell et al. (2012)

Belokurov (2013)

Dwarf galaxies

Koposov et al. (2015)

Dwarf spheroidal galaxy Eridanus II (Eri II)

Dark Energy Survey

Koposov et al. (2015)

Deep imaging of Eri II and its cluster

Megacam Imager Maguellan Clay Telescope

Table 1Properties of Eri II and Its Cluster

Crnojevic et al. (2016)

Parameter	Eri II	Cluster		
R.A. (h:m:s)	03:44:20.1±10."5	$03:44:22.2 \pm 1''$		
Decl. (d:m:s)	$-43:32:01.7\pm5.03$	$-43:31:59.2 \pm 2''$		
$(m - M)_0$ (mag)	22.8 ± 0.1			
D (kpc)	366 ± 17			
ϵ	0.48 ± 0.04			
PA (N to E; o)	72.6 ± 3.3			
r_h (arcmin)	2.31 ± 0.12	0.11 ± 0.01		
r_h (pc)	277 ± 14	13 ± 1		
n (Sérsic index)	$1^{\mathbf{a}}$	0.19 ± 0.05		
$\mu_{V,0}$ (mag arcsec ⁻²)	27.2 ± 0.3	25.7 ± 0.2		
M_V (mag)	-7.1 ± 0.3	-3.5 ± 0.6		
$\langle (g-r)_0 \rangle$ (mag)	0.5 ± 0.3	0.4 ± 0.2		
$M_{ m HI}/L_V~(M_\odot/L_\odot)$	< 0.036			

Kinematical characterization of Eri II

Table 1 Summary of the Properties of Eridanus II						
low	Quantity	Value				
1)	$v_{\rm hel}~({\rm km~s^{-1}})$	$75.6 \pm 1.3 \pm 2.0$				
2)	$v_{\rm GSR} \ (\rm km \ s^{-1})$	-66.6				
(3)	$\sigma_{v} (\mathrm{km} \mathrm{s}^{-1})$	$6.9^{+1.2}_{-0.9}$				
4)	$M_{ m half}~(M_{\odot})$	$1.2^{+0.4}_{-0.3} imes 10^7$				
5)	$M/L_V \left(M_\odot/L_\odot ight)$	420^{+210}_{-140}				
6)	$\frac{dv}{d\chi}$ (km s ⁻¹ arcmin ⁻¹)	0.1 ± 1.1				
(7)	Mean metallicity	-2.38 ± 0.13				
(8)	Metallicity dispersion (dex)	$0.47^{+0.12}_{-0.09}$				

Li et al. (2017)

Kinematical characterization of its cluster

What is the star formation history of Eri II?

Zoutendijk et al. (2020)Possible presence of carbon stars.

Crnojevic et al. (2016)

What is the star formation history of Eri II?

- How old is it?
- How long did it form stars?
- Are there two separated star formation episodes?
- Is there evidence of the presence of young or intermediate age population stars?
- What is the possible origin of the carbon stars?

HST/ACS photometric data of Eri II

F475W/F814W Hubble Legacy Archive P.I. D. 14224 Gallart 2016, G16 hereafter F475W - 7644 s, F814W - 7900 s

90% comp. - F475W < 29 mag

90% comp. - F606W < 29.2

F606W/F814W published photometry

F606W - 12830 s, F814W - 20682 s

Simon et al. (2021), S21 here after

Inference of the star formation history

$$\mathbf{P}(\boldsymbol{a}|F_{j}^{k}) \propto \mathbf{P}(\boldsymbol{a}) \prod_{j=1}^{N_{D}} \int \frac{S(F_{j}^{k})\mathbf{P}(F_{j}^{k}|F_{\text{true}}^{k}) \mathbf{P}(M_{j}^{k}|\boldsymbol{a})}{\ell(\boldsymbol{a},S)} dM_{j}^{k},$$

- a Isochrone contribution (SFH) $a = \{a_{i=1,...,N_I}\}, a_i > 0 \text{ and } \sum_i a_i = 1$
- F_{i} apparent magnitude
- True apparent magnitude $F_{true}^k = M_j^k + \mu$

Model inputs

• Kroupa IMF

Grid	Isaabranas	Age Step (Gyr) (Gyr)	Z				N.			
	Isociirones		(Gyr)	0.00001	0.00005	0.0001	0.0002	0.0005	0.001	Niso
А	BaSTI	[1,14]	0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		135
В	PARSEC	[1,14]	0.5			\checkmark	\checkmark	\checkmark	\checkmark	108

SFH Eri II: Grid A

SFH Eri II: Grid B

Cumulative SFH: GridA

- For G16 ~60% of the stars in Eri II are younger than 13 Gyr.
- For S21 ~ 75% of the stars in Eri II are older than 13 Gyr.
- The most statistically significant inference shows a star formation quenching 13 Gyr ago.

Quenching by reionization

Simon et al. (2021)

From a statistical analysis of orbital information and comparing whit simulations (Garrison-Kimmel et al. 2014) they concluded:

- Eri II has not yet passed through its closest approach to MW.
- The reionization is then the most likely cause for the quenching of star formation in Eri II.

Quenching by stellar feedback

Gallart et al. (2021):

- Leo T is similar to Eri II and held the star formation beyond reionization times.
- The quenching of star formation in Eri II is due to stellar feedback.
- The energy injected by supernova events is enough to overcome the gravitational potential of Eri II.

Carbon stars in Eri II

1.55 Mo

- C stars from Zoutendijk et al. (2020) MUSE.
- Since we do no detect any residual star formation extending to ~2 Gyr, it is likely that C stars evolve from lower star mass progenitors that increased their mass through stellar fusions.

Conclusions

- We find convincing evidence that the bulk of the stars in Eri II are very old, with an age of 13.5 $^{+0.5}$ -1 Gyr and quite metal poor, with Z = 0.00001.
- In agreement with S21, we found that the 75% of the stars were formed 700 Myr after Big Bang. This result is consistent with the width at half maximum (\sim 500 Myr) of the derived star formation rate profile of G21.
- We did not succeed in determining the age of the star cluster as an independent entity.
- Nor we find any evidence of the presence of an intermediate age population.
- The lack of recent star formation implies that mass pumping of lower mass MS stars through blue-straggler fusions is responsible of forming the massive progenitors of the C stars seen today in Eri II.