A 1.1 mm AzTEC Survey of Red-Herschel dusty star-forming galaxies

Early Science with the Large Millimeter Telescope: a 1.1 mm AzTEC Survey of Red-*Herschel* dusty star-forming galaxies

MNRAS

A. Montaña,^{1,2 *} J. A. Zavala,³ I. Aretxaga,² D. H. Hughes,² R. J. Ivison,⁴ A. Pope,⁵ D. Sánchez-Argüelles,^{1,2}
G. W. Wilson,⁵ M. Yun,⁵ O. A. Cantua,³ M. McCrackan,⁵ M. J. Michałowski,⁶ E. Valiante,⁷ V. Arumugam,⁸
C. M. Casey,³ R. Chávez,^{1,9} E. Colín-Beltrán,^{1,2} H. Dannerbauer,^{10,11} J. S. Dunlop,¹² L. Dunne,¹³ S. Eales,¹³
D. Ferrusca,² V. Gómez-Rivera,² A. I. Gómez-Ruiz,^{1,2} V. H. de la Luz,¹⁴ S. J. Maddox,^{13,12} G. Narayanan,⁵
A. Omont,¹⁵ I. Rodríguez-Montoya,^{1,2} S. Serjeant,¹⁶ F. P. Schloerb,⁵ M. Velázquez,² S. Ventura-González,¹⁷
P. van der Werf,¹⁸ M. Zeballos^{19,2}

Alfredo Montaña (amontana@inaoep.mx) Catedrático CONACYT-INAOE/GTM

IRyA - Mayo 25, 2021

Negative k correction

03/17

Blain+2002

Herschel-ATLAS (H-ATLAS) → ~ 600 sq.deg in 5 fields Eales+2010; Valiante+2016

PACS: $\lambda = 100 \text{ y} 160 \mu \text{m}$ SPIRE: $\lambda = 250, 350 \text{ y} 500 \mu \text{m}$ $1\sigma = 7.4, 9.4 \text{ and } 10.2 \text{ mJy}$ FWHM = 17.8", 24.0" y 36.6"

The Herschel 500µm counts Negrello+2010

Sub-Millimeter Galaxies (SMGs / DSFGs)

- Distribution at z > 4?
- Space density?
- Contribution to the SFRD at z > 4?
- Are they really progenitors of massive ellipticals?
- What triggers their high SFR?
- Mergers or extreme discs?
- How do they trace the LSS (bias)?
- What is the roll of environment in their evolution?

Selecting high-z candidates

SNR

08/17

RSR 3mm follow-up

Physical properties (Marianela Quirós, MSc thesis) $< T_{dust} > \sim 48 \text{ K}$ $<\beta>\sim1.7$ $< M_{dust} > = 1.2 \text{ x } 10^9 \text{ M}_{\odot}$

 $n_{\rm H2} = 3.2 - 7.9 \text{ cm}^{-3}$ $< M_{gas} > = 1.9 \text{ x } 10^{11} \text{ M}_{\odot}$

 $SFR = 2400 - 5200 M_{\odot}/yr$ $\tau_{dep} = 30 - 82 \text{ Myr}$

SLEDs: 2mm B4R/LMT VLA

Fudamoto +201

 $\overline{}$

50m-LMT

 $^{12}CO(5-4)$

 $^{12}CO(5-4)$

 $^{12}CO(4-3)$

Physically Interacting Systems & Overdensities

<u>23 AzTEC "serendipitous" detections</u> But only ~4 are expected given the total survey area (~720 sq.arcmin).

Probability ~ 8 x 10^{-12}

Overdensity parameter = 4.75 (in agreement with Lewis+2018)

Are some of these red-Herschel associated with high-z galaxy overdensities?

ALMA/LMT follow-up (please!)

$\Delta z < 0.06$

pre-coalescence galaxy pairs?

Summary & Conclusions

Multiplicity 9% (18%) - 50% (60%) ~25% no longer "red" (Ma+2019) Larger multiplicity fraction in the brighter (S_{500} >60mJy) targets. Redshifts < z > = 3.6 (3.8 vs 3.5)85% (a) z > 3 / 33% (a) z > 4**Properties** $< L_{IR} > ~ 1.3 \times 10^{13} L_{\odot}$ $SFR = 900 - 5200 M_{\odot}/yr$ Population at 4 < z < 6Space density = $3x10^{-7}$ Mpc⁻³ SFRD > 8 x 10⁻⁴ M_{\odot}/yr/Mpc⁻³

- 2 new z_{spec} >4 + 4 confirmed
- Catalogue with deblended photometry + sub-samples

Bonus track (work in progress)

GTM 50-m / TolTEC (advertisement)

GTM/TolTEC 1.1mm (simulations)

<u>toltec.astro.umass.edu/</u>

6 sq. arcmin

JCMT/SCUBA 850 μm HDF survey

Hughes et al. (1998)

5" FWHM

16/17

TolTEC 1.1mm, 0.025mJy r.m.s. 100 fuentes > 3σ 15" FWHM

SCUBA 850 μ m, 0.45mJy r.m.s. <u>5 fuentes > 3 σ </u>

GTM 50-m / TolTEC (advertisement)

6 sq. arcmin

GTM/TolTEC 1.1mm (simulations)

<u>toltec.astro.umass.edu/</u>

50 horas 1800 sq. arcmin

5" FWHM

TolTEC 1.1mm, 0.025mJy r.m.s. <u>25,000 fuentes > 3σ + 1.4 & 2.0mm!!!</u> 15" FWHM SCUBA 850μm, 0.45mJy r.m.s. <u>5 fuentes > 3σ </u>

JCMT/SCUBA 850µm HDF survey

Hughes et al. (1998)

<u>toltec.astro.umass.edu/</u>

GTM 50-m / TolTEC (advertisement)

GTM/TolTEC 1.1mm (simulations)

50 horas 1800 sq. arcmin JCMT/SCUBA 850µm HDF survey Hughes et al. (1998)

6 sq. arcmin

¡GRACIAS! amontana@inaoep.mx

5" FWHM

TolTEC 1.1mm, 0.025mJy r.m.s. <u>25,000 fuentes > 3σ</u> 15" FWHM

SCUBA 850 μ m, 0.45mJy r.m.s. <u>5 fuentes > 3 σ </u>