Star cluster systems in nearby spiral galaxies. Case: Globular clusters

Mc. Luis Fernando Lomelí Núñez Dr. Yalia Divakara Mayya Dr. Lino Hector Rodríguez Merino Mc. Pedro Antonio Ovando 8 de junio de 2021

Generalities:

• What are we going to study? We will study the stellar populations the stellar populations in a sample of nearby spiral galaxies: M81 (Santiago-Cortéz et al. 2010), M101 (Simanton et al. 2015), NGC 4258, M51 (Hwang et al. 2008) y NGC 628 (NGC 1300, NGC 1483, NGC 2397 NGC 1309).

- How are we going to do it? Performing a photometric and spectroscopy analysis.
- Photometric data: we use images observed with Advance Camera for Surveys on board Hubble Space Telescope (ACS/HST) F435W (B), F555W (V) y F814W (I) bands and F336W (U) (WFC3/HST).
- Spectroscopic data; we used **OSIRIS/GTC** data, taked with R1000B grism (3650-10000 Å). Time obtained with the Mexican participation time.
- Probably spectroscopic data from MEGARA/GTC.

Goals:

1.- In this work the principal objective is establish the presence of Super Stellar Compact (SSC), in a sample of spiral galaxies nearby. These SSCs are believed to be the 'link' between a middle-aged cluster and a globular cluster (GC). (In this presentation only I establish the presence of SSC).

2.- Study the evolution of Luminosity Function (LF) of SSC at different ages. (Here the globular cluster LF is only present).

3.- Estimate the **Stellar Formation History** (SFH), through SSC of different ages.

4.- Determine the importance of interactions in the formation and 'evolution of galaxies.

Stellar clusters (a brief introduction):

Open clusters*:

- Type I.
- Young (<10⁶años).
- Blue.
- Metal-rich.
- Disk and core.

- **Globular clusters**:**
- Type II.
- Old (10[°] años)
- Red.
- Metal-poor.

 Ω Centauri

Antennae

Compact clusters***:

- Starburst galaxies
- Sizes (r_e<10pc) and masses (10⁵ M_{sun})
- Super Stellar cluster (SSC) are the most massive.
- Ages between: open and GC. Transition clusters?
- Faint Fuzzy clusters****
- Extended (7<r_e<15 pc).
 - Faint (Mv= -6 to -7).
- Colours like a GCs.

* eg., Ryon, et al. (20015) **eg., Brodie & Strader (2006) ***eg., Whitmore et al. (1999) ***eg., Larsen & Brodie (2000) 5

Sample of galaxies:

• Nearby spiral galaxies (~4-30 Mpc). In this talk I present the results for galaxies within 10 Mpc.

Hubble Legacy Archive Frequently Asked Questions

- Spatial observational coverture in two HST filters: F435W and F814W, F555W (0.05 arcsec/pix) and F336W (0.04 arcsec/pix).
- Galaxies with super stellar clusters.

Name (1)	Hubble Type (2)	RA (J2000) (3)	DEC (J2000) (4)	A _V (mag) (5)	R ₂₅ (') (6)	a _{max} (*) (7)	d (Mpc) (8)	m – M (mag) (9)	Distance method (10)	Source (11)	M _{V0} (12)	(B – (13)	V) ₀ Scale Source (pc) SSCs (14) (15)	Proposal ID (16)	Number of fields (17)
M81	Sab	09:55:33.1	69:03:55	0.220	13.45	7.74	3.61	27.79±0.06	Cepheids	1	-21.10	0.91	0.87 1,2	11570	29
NGC 1313	SBd	03:18:16.05	-66:29:53	0.362	4.56	3.73	4.60	28.32±0.08	Cepheids	2	-19.97	0.38	1.11 3	9774	3
M101	Scd	14:03:12.5	54:20:56	0.023	14.42	7.49	6.95	29.21±0.06	Cepheids	3	-21.37	0.44	1.68 5,7,8	9490,9492	12
NGC4258	Sbc	12:18:57.5	47:18:14	0.045	9.31	8.60	7.576	29.397±0.032	MASER	4	-21.03	0.67	1.84 4	1157	17
M51	Sbc	13:29:56.2	47:13:50	0.095	5.61	3.40	8.43	29.67±0.02	SNII	5	-21.40	0.57	2.04 5,6	10452	6(4)
NGC628	Sc	01:36:41.7	15:47:01	0.192	5.23	5.1	9.77	29.95±0.04	SNII	6	-20.75	0.50	2.36 5,9	10402	3
NGC1300	SBbc	03:19:41.0	-19:24:40	0.083	3.08	3.08	14.50	30.81±0.40	Tully-Fisher	7	-20.46	0.63	3.51 5	10342	2
NGC 1483	SBbc	03:52:47.6	-47:28:39	0.019	0.81	0.81	18.70	31.36±0.47	Tully-Fisher	8	-18.70	0.42	4.53 5	9395	1
NGC 2397	SBb	07:21:20.0	-69:00:05	0.562	1.22	1.22	19.80	31.48±0.45	Tully-Fisher	9	-20.21	0.67	4.79 5	10498	1
NGC 1309	SAbc	03:22:06.5	-15:24:00	0.110	1.09	1.09	30.20	32.40±0.06	Cepheids	10	-20.98	0.37	7.32 5	10497	1

Notes: (1) Galaxy Name, (2) Hubble morphological type from RC3 (Corwin et al. 1994), (3,4) Right ascension, Declination, in J2000, (5): Galactic extinction from Schlafty & Finkbeiner (2011), (6) R_{25} from RC3 (Corwin et al. 1994), (7) a_{max} is the semi-major axis covered by observations, (8) Distance used in this work, (9) Distance modulus, (10) Distance estimation method, (11) Source of distances: 1.- Tully et al. (2013); 2.- Qing et al. (2015); 3.- Riess et al. (2016). 4.- Reid et al. (2019); 5.- Rodríguez et al. (2014); 6.- Olivares E. et al. (2010), (12,13) Absolute magnitude in V band and (B - V)₀ colour from RC3 (Corwin et al. 1994), (14) HST/ACS pixel scale in pc pixel⁻¹, (15) References to previous studies of stellar clusters: 1.- Santiago-Cortés et al. (2010); 2.- Nantais et al. (2010); 3.- Ryon et al. (2017); 4.- González-Lópezlira et al. (2017); 5.- Whitmore et al. (2014); 6.- Hwang & Lee (2008); 7 Barmby et al. (2006); 8 Simanton et al. (2015b); 9 Adamo et al. (2017), (16) HST proposal number, (17) Number of ACS fields of each galaxy used in this work.

8 de junio 2021

Table 1.- Sample of study.

Sample of galaxies: M81

Astrometry, detection and phtometry:

Astometry: we correct the angular coordinates using GAIA and ccmap IRAF task with a second order polynomial in coordinates.

Detection and photometry: We employ the SExtractor software (v2.19.5), for detection (Table 2) and photometry (Table 1). We made photometry aperture.

Galaxy	All N_5	$SSC+GC N_{GC} N_{GC} N_{GC}^{U}$	$\frac{J}{C}/N_{GC}N_{cc}$	$_{\rm out}/N_{\rm GC}$
(1)	(2)	(3) (4)	(5)	(6)
M81	565438	433 158	0.65	0.20
M101	1215533	$3503\ 1202$	0.15	0.31
NGC4258	1360607	936 334	0.38	0.33
M51	452747	1196 293	0.52	0.25
NGC628	224108	608 173	0.41	0.14

Table 3.- Source detection and stellarcluster selection.

8 de junio 2021

Table 2.- Log of HST/ACSoptical observations of oursample galaxies.

	F43	5W	F55	55W	F81	4W	Astro	ometric
ID	T_{exp}	c0	T_{exp}	c0	T_{exp}	c0	$N_{\rm stars}$	RMS
	(s)		(s)		(s)			(arcsec)
_				3.64.6				
				M10)1			
01	900	25.792	720	25.736	720	25.531	93	0.0259
02	900	25.792	720	25.736	720	25.531	55	0.163
03	900	25.792	720	25.736	720	25.531	38	0.0385
a1	900	25.792	720	25.736	720	25.531	41	0.0319
a2	900	25.792	720	25.736	720	25.531	37	0.278
a_3	900	25.792	720	25.736	720	25.531	11	0.0766
b1	900	25.792	720	25.736	720	25.531	10	0.187
c1	900	25.792	720	25.736	720	25.531	18	0.0925
c2	900	25.792	720	25.736	720	25.531	21	0.0175
10	1080	25.792	1080	25.736	1080	25.531	13	0.0988
11	1080	25.792	1080	25.736	1080	25.531	29	0.0456
13	1080	25.792	1080	25.736	1080	25.531	11	0.0862
				NGC	4258			
0b	360	25.767	975	25.717	375	25.520	6	0.0134
84	360	25.767	975	25.717	375	25.520	8	0.0264
85	360	25.767	975	25.717	375	25.520	6	0.0058
86	360	25.767	975	25.717	375	25.520	27	0.0049
87	360	25.767	975	25.717	375	25.520	35	0.0049
88	360	25.767	975	25.717	375	25.520	26	0.0051
89	360	25.768	975	25.717	375	25.521	12	0.0023
90	360	25.767	975	25.717	375	25.520	13	0.0090
91	360	25.767	975	25.717	375	25.520	5	0.039
92	360	25.768	975	25.717	375	25.521	8	0.025
93	360	25.768	975	25.717	375	25.521	9	0.0273
94	360	25.768	975	25.717	375	25.521	9	0.03
95	360	25.768	975	25.717	375	25.521	8	0.0145
96	360	25.768	975	25.717	375	25.521	20	0.0157
97	360	25.768	975	25.717	375	25.521	8	0.0054
98	360	25.768	975	25.717	375	25.521	30	0.0054
99	360	25.767	975	25.717	375	25.520	14	0.0128
				M5	1			
1-6	680×4	25.888	340×4	25.715	340×4	25.471	299	0.0482
				NGC	628			
21	1200	25.789	1000	25.732	900	25.528	9	0.0445
22	800	25.788	360	25.731	720	25.528	15	0.047
0.0	1050	05 500	050	05 500	0.00	05 500		0.001

Table 2.- Log of HST/ WFC3 F336W-band observations of our sample galaxies.

ID	T_{exp}	c0	N_{stars}	RMS	Proposal
	(s)	(0)	<i>(</i> n)	(arcsec)	ID
(1)	(2)	(3)	(4)	(5)	(6)
			M101		
64	2361	23.546	-	-	13364
79	2382	23.546	-	-	13364
94	2382	23.546	-	-	13364
95	2382	23.546	-	-	13364
		1	NGC 42	58	
0d	1062	23.546	33	0.0154	13364
74	1062	23.546	15	0.0109	13364
			M51		
01	4360	23.546	163	0.0352	13340
0g	2376	23.546	55	0.0191	13364
Oi	2361	23.546	42	0.0317	13364
76	2376	23.546	64	0.0281	13364
31	780	23.546	31	0.0350	14149
			NGC 63	28	
19	2361	23.546	15	0.0031	13364
20	1119	23.546	10	0.0321	13364
				•	
Field	ID	Filter	Prog	escal ID	Exp. time (s)
Field	ID	Filter	Prop	osal ID	Exp. time (s)
Field F1	ID	Filter F435W	Prop	osal ID 0584	Exp. time (s) 1×900
Field F1 F1	ID	Filter F435W F606W	Prop 10 10	osal ID 0584 0584	Exp. time (s) 1×900 1×880 1×895
Field F1 F1 F1 F1	ID	Filter F435W F606W F814W F435W	Prop	osal ID 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565
Field F1 F1 F1 F2 F2	ID	Filter F435W F606W F814W F435W F606W	Prop 10 10 10 10	osal ID 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1580
Field F1 F1 F1 F2 F2 F2 F2	ID	Filter F435W F606W F814W F435W F606W F814W	Prop 10 10 10 10 10 10	00581 ID 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1580 3×1595
Field F1 F1 F1 F2 F2 F2 F3-F	ID 114	Filter F435W F606W F814W F435W F606W F814W F435W	Prop	005al ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1580 3×1595 2×1200
Field F1 F1 F2 F2 F2 F3 F3 F3 F3 F3 F3 F3	ID 114	Filter F435W F606W F814W F435W F606W F814W F435W F606W	Prop		Exp. time (s) 1×900 1×880 1×895 3×1565 3×1580 3×1595 2×1200 2×1200
Field F1 F1 F2 F2 F2 F3 F3 F3 F3 F3 F3 F F3 F	ID	Filter F435W F606W F814W F435W F606W F814W F435W F606W F814W	Prop		Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 2×1200 3×1650
Field F1 F1 F2 F2 F2 F3 F3 F3 F3 F3 F3 F1 F12	ID 114 114 114 110 1	Filter F435W F606W F814W F435W F606W F814W F814W F814W F814W	Prop	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1 × 900 1 × 880 1 × 895 3 × 1565 3 × 1595 2 × 1200 2 × 1200 3 × 1650 2 × 1100 2 × 11660
Field F1 F1 F2 F2 F2 F3-F F3-F F3-F F3-F F1- F12-D	ID 14 14 14 10 1 F14 F14	Filter F435W F606W F814W F435W F606W F435W F606W F814W F814W F814W F814W	Prop 10 10 10 10 10 10 10 10 10 10 10 10 10	00000000000000000000000000000000000000	Exp. time (s) 1 × 900 1 × 880 1 × 895 3 × 1565 3 × 1580 3 × 1595 2 × 1200 3 × 1650 2 × 1100 3 × 1650 2 × 1105
Field F1 F1 F2 F2 F2 F3-F F3-F F1- F12-J F15-J F15-J F15-J	ID 14 14 14 10 1 F14 F16 F16	Filter F435W F606W F814W F435W F606W F814W F814W F814W F814W F814W F814W F606W	Prop 10 10 10 10 10 10 10 10 10 10 10 10 10	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1 × 900 1 × 880 1 × 895 3 × 1565 3 × 1595 2 × 1200 2 × 1200 3 × 1650 3 × 1650 3 × 1650 3 × 1580
Field F1 F1 F1 F2 F2 F2 F3-F F3-F F3-F F1- F15-1 F15-1 F15-1	ID 14 14 14 10 1 F14 F16 F16 F16	Filter F435W F606W F814W F435W F606W F814W F435W F814W F814W F814W F814W F814W	Prop	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1 × 900 1 × 880 1 × 895 3 × 1565 3 × 1595 2 × 1200 2 × 1200 2 × 1200 3 × 1650 3 × 1650 3 × 1555 3 × 1585 3 × 1585
Field F1 F1 F2 F2 F3-F F3-F F1- F15-1 F15-1 F15-1 F15-1 F15-1 F15-1	ID 14 14 14 10 1 1 14 10 1 1 14 10 1 1 14 10 1 16 16 16 16 16 7	Filter F435W F606W F814W F435W F606W F814W F814W F814W F814W F814W F814W F815W F814W F435W F814W	Prop. 10 10 10 10 10 10 10 10 10 10 10 10 10	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 2×1200 3×1650 3×1650 3×1650 3×1565 3×1580 3×1595 2×665
Field F1 F1 F2 F2 F3-F F3-F F3-F F1 F12-J F15-J F15-J F15-J F15-J F15-J F15-J	ID 14 14 14 10 1 F14 F16 F16 F16 F16 7 7	Filter F435W F606W F814W F435W F435W F606W F814W F814W F435W F606W F814W F435W F606W F814W	Prop 10 10 10 10 10 10 10 10 10 10	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 3×1650 2×1200 3×1650 3×1650 3×1565 3×1580 3×1595 2×665 1×350
Field F1 F1 F2 F2 F3-F F3-F F3-F F15-I F15-I F15-I F15-I F15-I F15-I F15-I F15-I F15-I	ID 114 114 110 1 F14 F16 F16 F16 F16 7 7 7	Filter F435W F606W F814W F435W F606W F814W F814W F814W F814W F435W F606W F814W F435W F606W F814W	Prop 10 10 10 10 10 10 10 10 10 10 10 10 10	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 2×1200 3×1650 2×1100 3×1650 3×1565 3×1565 3×1580 3×1595 2×665 1×350 1×350
Field Fil F1 F1 F1 F2 F2 F2 F2 F3 F7 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	ID 114 114 114 101 1 114 110 1 1 114 116 116 116 116 117 117 114 114 114 114 114 114	Filter F435W F606W F435W F606W F814W F814W F814W F814W F435W F606W F814W F435W F606W F814W F435W	Prop 10 10 10 10 10 10 10 10 10 10	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 2×1200 3×1650 2×1100 3×1650 3×1565 3×1580 3×1595 2×665 1×350 1×350 2×1200
Field F1 F1 F1 F1 F2 F2 F2 F3 F7 F3 F7 F1 F15 F1 F15 F15 F15 F15 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	ID 114 114 110 1 110 1 111 115 113 113 113	Filter F435W F606W F814W F435W F606W F814W F814W F814W F814W F814W F435W F606W F814W F435W F606W F435W F606W	Prop	oosal ID 0584 0584 0584 0584 0584 0584 0584 0584	Exp. time (s) 1×900 1×880 1×895 3×1565 3×1595 2×1200 2×1200 3×1650 3×1650 3×1650 3×1595 2×665 1×350 2×1200 2×1200

Selection of Super Stellar Clusters:

Structural parameters: a SSC must satisfy with: 2.4<FWHM<10, ELLIPTICITY>0.3 and AREA <500 pix (Mayya et. al 2008, Santiago-Cortez et., al 2010).

Simulations: a cluster is defined bv · a Gaussian intensity profile for a given FWHM and a total magnitude, with FWHM taking values of 2.0, 2.4, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 pixels, and mags between 19 and 24.

Colour: for all SSC candidates we plot B-I colour. Is a bimodality distribution with a valley to B-I = 1.5

FWHM [pix]

NGC628

10

ĒÞ

ARI

500

[x 400 d 300

AREA 100

Colour-magnitude diagram

- GC candidates B-I>1.5.
- SSPs with Z=0.001 (solid line) and 0.008 (dashed line).
- Vertical line GC with 12 Gyr, Z=0.001 at different masses.
- The reddening vectors (black arrows) with Av = 1 mag.
- chosen • The colour cut clusters older separates than from 3 Gyr the younger ones for unreddened SSPs.

Table3.-Sourcedetectionstellar cluster selection.

Galaxy (1)	All N (2)	(3) (4)	$\frac{U_{GC}}{N_{GC}} N_{co}$ (5)	$\frac{N_{GC}}{(6)}$
M81	565438	433 158	0.65	0.20
M101	1215533	35031202	0.15	0.31
NGC4258	81360607	936 334	0.38	0.33
M51	452747	1196 293	0.52	0.25
NGC628	224108	$608\ 173$	0.41	0.14

Colour-Colour Diagram:

- GC candidates with U-band (u, F336W) measure (B-I>1.5).
- SSPs with different metallicities.
- The reddening vector (black arrow) with Av = 1 mag.
- The reddened young SSCs that occupy the GC colours are contaminants, which are identified by red dots surrounded by circles of cyan colour.

g)o

D

0

m

Table 3.- Source detection andstellar cluster selection.

Galaxy (1)	All N (2)	Vssc+gc (3)	N _{GC} (4)	N_{GC}^U/N_{GC} (5)	$N_{\text{cont}}/N_{\text{GC}}$ (6)
M81	565438	433	158	0.65	0.20
M101	1215533	3503	1202	0.15	0.31
NGC4258	1360607	936	334	0.38	0.33
M51	452747	1196	293	0.52	0.25
NGC628	224108	608	173	0.41	0.14

Luminosity Functions of Globular Clusters in five nearby spiral galaxies

Globular Clusters Luminosity Function (GCLFs)

$$dN/dM = N_0 e^{-(M-M_0)^2/2\sigma^2}$$

where $-7.3 < M_V < -7.5$ and σ =1.1, for Milky Way (eg., Harris 1996, Jordan et., al. 2006)

Peacock et al. (2010)

González-Lópezlira et al. (2017)

- Some authors have suggested that GCLFs in elliptical galaxies is Universal (e.g. Hanes 1977b; Richtler 2003; Brodie & Strader 2006; Harris et al. 2014).
- What does it mean Universal? All have the same form All have the same peak o Turnover (TO) The same processes of formation and evolution (?)
- However, for spiral galaxies is not yet well defined.
 - GCs detection is more difficult compared to elliptical galaxies:
 - Spiral galaxies show substructure of the same scale size of GCs (spurious detections).
 - Most of studies of GCs in spiral galaxies, are in edge-on galaxies.
- To build a complete GCLF is necessary: Spatial coverture. Spatial resolution.
- Are GCLFs the same for all spiral galaxies?

M51 GCLF:

Fitting parameters:

 $TO_{fit} = 21.44 \pm 0.20,$ $\sigma = 0.64 \pm 0.05$

m-M=29.67+-0.02 (Rodriguez et al. 2014)

 $TO_{fit} = -8.34 \pm 0.07$ $TO_v = -7.44 \pm 0.12$

Diferencia vs MW: $dif_{\tau o} = -0.04$; $dif_{\sigma} = -0.51$

GCLFs:

For construct the GCLF:

- Aperture photometry Star cluster Simulations
- Structural parameters selection SExtractor
- Colour selection (B-I) and (U-B)
- Completeness corrections Star cluster Simulations
- Contaminants corrections (U-B)
- The mean TO in four galaxies is:

TO=-7.38+-0.13, $\sigma = 0.80+-0.12$, while for MW: TO=-7.40+-0.10, $\sigma = 1.15+-0.1$

M_{F814W} M_{F814W} -11-10 -9 -8 40 40E M81 30 E 30 2 2 20 20 10 22 23 16 20 21 ٦6 18 20 21 22 23 24 F814W F814W *М_{F814W}* -**12-11-10 -9 -8 -7 -6** M_{F814W} 12 - 11 - 10 - 9 - 8 - 7 - 6500 P M101 M101 400 400 300 300 2 2 200 200 100 100 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 F814W F814W М_{F814W} M_{F814W} -13-12-11-10-9 -8 12-11-10-9 -8 -7 -7 -6 100 100 NGC 4258 NGC 4258 80 80 2 60 60 2 40 40 20 20 0 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 F814W F814Wo M_{F814W} M_{F814W} -13 - 12 - 11 - 10 - 9-13-12-11-10 -9 -8 12 M51 100 100 75 2 50 $M_{814}^{3^{rd}}$ 25 <u>46</u> 17 18 19 20 21 22 23 24 F814W (12)M_{F814W} -12 - 11 - 10 - 9-10.84

GCLFs:

Normalized absolute F814W magnitude distribution of our sample of galaxies. The gray band indicate the TO magnitude of the MW GC. The band-width correspond to the TO uncertainty.

 $TO_v - TO_{MW}$ vs the Hubble Type of host galaxies. The plot includes 5 galaxies from our sample and the MW, M31 and LMC galaxies. The error in the MW TO is indicated by the width of the gray band.

Some conclusions:

- We find that the LF of GCs in all the five analyzed galaxies is lognormal in nature, with the turn-over (TO) happening on the brighter side of the 50% incompleteness limiting.
- The mean of the Mv(TO) in 4 of our galaxies is -7.38±0.13, which is in excellent agreement with the values determined for GC population in the Milky Way $Mv(TO) = -7.40\pm0.10$ mag (Jordan et al. 2006).
- In the fifth galaxy M101, Mv(TO) is 0.86 mag fainter than the MW. We propose that this difference in Mv(TO) arises due to morphological differences, with spiral galaxies of the Hubble types Sc or earlier having a universal Mv(TO), whereas the Hubble types later than Sc have fainter Mv(TO).
- The universality of Mv(TO) in early-type spirals is due to the classical GCs dominating the GC population, whereas in late-type spirals GC population is often dominated by old disk clusters, which are in general less massive, and hence fainter than the classical GCs, but otherwise share the same observational properties as the classical GCs. 8 de junio 2021 18

Second part: Spectroscopic results

19

Generalities:

What do we want to do with the spectra?

Date the star clusters

How will we do it?

In three steps: 1.- Metallicity (Spectral indices) 2.- Extinction (SSP) 3.- Age (SSP)

- Spectral dating is age-colour degeneration free.
- We use simple stellar populations (SSP) spectra with ages ranging from 1 to 13.5 Gyr, and metallicities: Z=0.0001, 0.0004, 0.004, 0.008, 0.02, y 0.05.
- For this purpose, the IspecFit (INAOE Spectra Fitting) software was created.

We have analyzed 42 GC candidates spectra in M81.

Spectroscopic campings:

OSIRIS:

- 8 OBs en M81
- 3 OBs en M101
- 1 OB en NGC 1300*

MEGARA:

- NGC 4258*
- NGC 628*

Declination

*Not observed yet

tun/Mode 1)	PI (2)	Date (3)	PA (4)	SW (5)	Exp. time (6)	AM (7)	Seeing (8)	Night (9)	Std (10)	N_{GC} (11)
tc10aob002 2010A-LS2	D. Rosa-González	2010-04-05	6.24	1.00	3×900	1.33	0.80	G	Feige 34	3
tc10aob004 2010A-LS4	D. Rosa-González	2010-04-05	105.20	1.00	3×900	1.56	0.80	G	Feige 34	1
tc10aob005 2010A-LS5	D. Rosa-González	2010-04-06	127.20	1.00	3×900	1.43	0.80	F	Feige 34	1
tc12bob001 2012B-LS1	Y. D. Mayya	2013-01-12	250.50	1.23	3×1500	1.31	0.79	D	Feige 34	2
tc12bob002 2012B-LS2	Y. D. Mayya	2013-01-12	247.00	1.23	3×1500	1.40	0.97	D	Feige 34	2
tc14aob001 2014A-MOS1	Y. D. Mayya	2014-04-03	0.00	1.20	3×1308	1.31	0.90	D	Ross 640	5
tc14aob002 2014A-MOS2	Y. D. Mayya	2014-03-23	0.00	1.20	3×1308	1.35	1.00	D	Ross 640	8
tc14aob003 2014A-MOS3	Y. D. Mayya	2014-04-03	0.00	1.20	3×1308	1.34	0.80	D	Ross 640	25

Notes: (1) Observation run. (2) Principal investigador (PI). (3) observational date (year-month-date). (4) Position angle (°) of the slit as measured on the astrometrized image. (5) Slit-width (arcsec). (6) Exposure time (number of exposures × integration time in seconds). (7) Mean airmass of the three integrations. (8) Seeing ("). (9) Night (G=grey or D=dark), clear skies (cirrus reported only for 2010A-LS5). (10) Standard star name (11) Number of GCs in each observation.

Right ascension

Spectral fittings software:

- **STARLIGHT:** is a software, based on Fortran 77, programmed to fit a composed spectrum model $M(\lambda)$ to an observed spectrum $O(\lambda)$, that is the sum of N* spectral components
- **ULySS** (University of Lyon Spectroscopic analysis Software): fit a spectra with a lineal combination of non-linear combined convolutions with a distribution of velocities in the line of sight and is polynomial multiplicative.
- SINOPSIS (SimulatiNg Optical Spectra with Stellar populations models): is a code created to reproduce the main characteristics of observed spectra of galaxies (at rest) in a range from UV to near infrared.
- **IspecFit** (INAOE Spectra Fitting, tentative name): is a software specialized in the analysis of old stellar populations. It is based on IDL and Python languages. It performs the spectral fit in three steps: 1) metallicity estimation using spectral indices, 2) extinction estimation and 3) age estimation using SSPs.

Spectral indices:

$$I = -2.5 \log_{10} \left[2 \int_{\lambda_1}^{\lambda_2} \frac{F_I}{F_{BC} + F_{RC}} d\lambda \right]$$

where F_{I} is the flux in the index width F_{BC} y F_{RC} are the pseudo-continuum fluxes enclosing the index range.

Element	Blue Continuum	Index	Red Continuum
D	3800.00 4000.00	4000.00 4200.00	0000.00 0000.00
CNR	$4082.00\ 4118.50$	$4144.00 \ 4177.50$	4246.00 4284.75
G	4268.25 4283.25	$4283.25 \ 4317.00$	4320.75 4335.75
MgH	4897.00 4958.00	5071.00 5134.75	5303.00 6366.75
Mg2	4897.00 4958.00	$5156.00 \ 5197.25$	5303.00 6366.75
Mgb	5144.50 5162.00	$5162.00 \ 5193.25$	5193.25 5207.00
Fe52	5235.50 5249.25	5248.00 5286.75	5288.00 5319.25
Fe53	5307.25 5317.25	5314.75 5353.50	5356.00 5364.75
Fe54	5376.25 5387.50	$5387.50\ 5415.00$	5415.00 5425.00

	Name	Index Bandpass	Pseudocontinua	Units	Measures	Error ¹	Notes
01	CN1	4143.375-4178.375	4081.375-4118.875 4245.375-4285.375	mag	CN, Fe I	0.021	
02	CN_2	4143.375-4178.375	4085.125-4097.625 4245.375-4285.375	mag	CN, Fe I	0.023	2
03	Ca4227	4223.500-4236.000	4212.250-4221.000 4242.250-4252.250	Å	Ca I, Fe I, Fe II	0.27	2
04	G4300	4282.625-4317.625	4267.625-4283.875 4320.125-4336.375	Y	CH, Fe I	0.39	
05	Fe4383	4370.375-4421.625	4360.375-4371.625 4444.125-4456.625	Å	Fe I, Ti II	0.53	2
06	Ca4455	4453.375-4475.875	4447.125-4455.875 4478.375-4493.375	Å	Ca I, Fe I, Ni I, Ti II, Mn I, V I	0.25	2
07	Fe4531	4515.500-4560.500	4505.500-4515.500 4561.750-4580.500	Å	Fe I, Ti I, Fe II, Ti II	0.42	2
08	Fe4668	4635.250-4721.500	4612.750-4631.500 4744.000-4757.750	Å	Fe I, Ti I, Cr I, Mg I, Ni I, C ₂	0.64	2
09	$\mathbb{H}eta$	4847.875-4876.625	4827.875-4847.875 4876.625-4891.625	Å	$\mathbb{H}\beta$, Fe I	0.22	3
10	Fe5015	4977.750-5054.000	4946.500-4977.750 5054.000-5065.250	Å	Fe I, Ni I, Ti I	0.46	2,3
11	Mg_1	5069.125-5134.125	4895.125 - 4957.625 5301.125 - 5366.125	mag	MgH, Fe I, Ni I	0.007	3
12	Mg ₂	5154.125-5196.625	$\begin{array}{r} 4895.125 \hbox{-} 4957.625 \\ 5301.125 \hbox{-} 5366.125 \end{array}$	mag	МgH, Mg b, Fe I	0.008	3
13	Mg b	5160.125-5192.825	5142.625-5161.375 5191.375-5206.375	Å	Mg b	0.23	3
14	Fe5270	5245.650-5285.650	5233.150-5248.150 5285.650-5318.150	Å	Fe l, Ca I	0.28	3
15	Fe5335	5312.125-5352.125	5304.625-5315.875 5353.375-5363.375	Å	Fe I	0.26	3
16	Fc5406	5387.500-5415.000	5376.250-5387.500 5415.000-5425.000	Å	Fe I, Cr I	0.20	2,3
17	Fe5709	5698.375-5722.125	5674.625-5698.375 5724.625-5738.375	Å	Fe I, Ni I, Mg I Cr I, V I	0.18	2
18	Fe5782	5778.375-5798.375	5767.125-5777.125 5799.625-5813.375	Å	Fe I, Cr I Cu I, Mg I	0.20	2
19	Na Đ	5878.625-5911.125	5862.375-5877.375 5923.875-5949.875	Å	Na I	0.24	
20	TiO_1	5938.375-5995.875	5818.375-5850.875 6040.375-6105.375	mag	TiO	0.007	
21	${ m TiO}_2$	6191.375-6273.875	6068.375-6143.375 6374.375-6416.875	mag	TiO	0.006	

INDEX DEFINITIONS

-Top: Lick incdices (Worthey et al. 1994). -Left: Lick indices to age and metallicity estimation (Mayya et al. 2013; Rodríguez-Merino in preparation)

Metallicity estimation:

For metallicity estimation we used the method described in Maya et al. (2013). It use tree iron spectral indices: Fe52, Fe53 and Fe54. It was calibrated using 41 MW-GCs from Schiavon et al. (2005).

$$[Fe/H] - k^2 = 4p(\text{Index} - h)$$

where k, p and h are the polynomial coefficients.

= -0.63+-0.10 (This work)

 $\mu_{IFe/H1}$

Fit spectral method:

- Index estimation (Brodie & Huchra 1990).
- Metallicity estimation with spectral indexes: Fe52, Fe53 y Fe54 (Mayya 2013, Lino-Merino in prep.).
- Extinction estimation (Cardelli et al. (1989).
- Age using with a χ^2 statistic:

$$\chi^{2} = \frac{1}{N} \sum_{i=1}^{n} \left(\frac{I_{obs,i} - I_{mod,i}}{\sigma_{obs,i}} W \right)^{2}$$

where *N* is the number of indexes, $I_{obs,i}$ and $I_{mod,i}$ are the observed and model index respectively. *W* is the statistical weight of the *i*-th index and sigma is the index error(Mayya et al. 2004).

- SSP ages range from 1 to 13.75 Gyr (Bruzaul & Charlot 2003).
- Initial function mass : Kroupa, Salpeter y Chabrier.
- Metallicities; Z=0.0001, 0.0004, 0.004, 0.008, 0.02, y 0.05.

Spectral fit proof in MW-GC:

From Schiavon et al., (2005):
41 MW-GC spectra. Observed with Telescopio Blanco de 4m.
Λ= 3350-6430 Å,
Resolution 3.1 Å in FWHM

NGC 1851: [Fe/H] = -1.13 Age = 13.5 Gyr Av = 0.18

Comparison: [Fe/H] = -1.18 De Angeli et al. (2005)

Age = 10.6+-2.1 Gyr Momany et al. (2003)

26

M81 GC candidates:

M81-GC1: [Fe/H] = -0.58 Age = 13.75 Gyr Av = 0.6

Comparasionn: [Fe/H] = -0.60 Edad > 13 Gyr (Mayya et al. 2013)

M81-GC16 [Fe/H] = -0.54 Age = 13.75 Gyr Av = 1.46

27

Some conclusions of spectroscopic part:

- Our results show a GCs mean metallicities higher than the reported in Natais et al. (2010).
- We develop a specialized software to fit old stellar populations spectra (IspecFit).
- IspecFit can be applied to estimate: 1) metallicity, 2) extinction and 3) age of stellar population.
- We have analyzed 42 GC candiates in M81 galaxy. We confirm that ~30 objects of our sample are GC. The remaining 12 candidate could not be verified to be GC due to their low S/N ratio.

General Conclusions:

- We developed (improved) a photometric method for detected SSC in spiral galaxies.
- We can establish the presence of SSC in our sample of galaxies.
- In the GC system in four of five galaxies here studied we found a TO similar to MW.
- We developed a specialized software to fit old stellar populations spectra.
- We still dating the blue and red SSC populations. For this we will use a photometric method.
- When we will date the blue and red part we can recover the star formation history.
- We are awaiting new spectroscopic observations from MEGARA.

29

Luminosity functions of globular clusters in five nearby spiral galaxies using HST/ACS images

Luis Lomelí-Núñez*, Y.D. Mayya, L.H. Rodríguez-Merino, P.A. Ovando,

and D. Rosa-González

Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla 72840, Puebla, Mexico

- The results presented in the previous slides have been submitted to MNRAS in the article titled: 'Luminosity functions of globular clusters in five nearby spiral galaxies using HST/ACS images'
- We sent the answer in May 23th, 2020.
- We response in May 18th 2021.

GTC/OSIRIS spectroscopic age estimation of globular clusters in M81

Luis Lomelí-Núñez,^{1*} Y.D. Mayya,¹ L.H. Rodríguez-Merino,¹ P.A. Ovando, ¹ Jairo A. Alzate,² B. Cuevas-Otahola,¹ Javier Zaragoza-Cardiel,¹ D. Rosa-González¹ Gustavo Bruzual² and V.M.A Gómez-González²

¹Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla 72840, Puebla, México ²Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089, México

GRACIAS

31